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DISCUSSION 

The reduced integration penalty finite element method has been frequently used to compute 
approximate velocity solutions to Navier- Stokes problems.’-4 The velocity approximation can be 
post-processed to obtain an approximate pressure solution. Numerical studies for Stokes 
have shown that for problems where the data (boundary conditions or the forcing function) are 
‘rough’, these computed pressures may exhibit oscillations for certain elements and reduced 
integration schemes, whereas smoother pressures are obtained for other (‘stable’) elements. An 
example of such a problem is the familiar ‘driven cavity’ problem. For this problem, both in the case 
of Stokes flow and low Reynolds number Navier-Stokes flow, when the 4-node bilinear element 
with 1-point Gauss integration of the penalty term is used, the pressures computed from the 
velocity field are found to be oscillatory, whereas when the 9-node biquadratic element with 1- 
point integration of the penalty term is used, smooth pressure profiles are obtained. 

Recently, we have been investigating the use of continuation techniques and iterative methods 
for computing approximate solutions at higher Reynolds numbers. On examining the computed 
pressures for the driven cavity we observed that as the Reynolds number increased, the local 
pressure oscillations for the bilinear element diminish and by Re = 2000 the pressure profiles at 
representative sections appear smooth. 

As an example, results are now given for the cavity problem and bilinear I-point element for 
calculations on a uniform mesh of size h = 1/32 and with penalty parameter E = The 
pressure profile at Re = 10 along the section y = 17/64 is given in Figure 1 (marked + ) and is 
seen to contain local pressure oscillations. The projected pressure obtained by averaging the 
four element pressures adjacent to a node is also given and is smooth (marked x ). Analogous 
results are also observed for Stokes flow (Re = 0). However, the computed pressure profile at 
J’ = 17/64 for Re = 2000 appears smooth (Figure 2).+ Similar behaviour is observed at other 
representative sections and is not shown here. Results with penalty parameter E = and 
E = 

Approximate solutions were also computed using the mixed method with Co biquadratic 
velocity and Co bilinear pressure on uniform meshes with h = 1/16 and h = 1/25. This element 
is known to be stable. The pressure solution is smooth as anticipated and qualitatively agrees 
with that obtained with the penalty method. However, quantitatively the pressure profiles agree 

were essentially the same. 

P. Gresho and his colleagues at Lawrence Livermore Laboratory have repeated the computations and verified our 
observation that the pressures at higher Re are smoother than those at low Re. 
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Figure 1 .  Computed pressures (+ )  pi(x,A:) and averaged pressures ( x )  for R e =  10 (uniform mesh, h =  1/32 with 

penalty parameter E = 

well at low Re but were not as close at higher Re, this difference possibly being due to the 
inadequacy of the mesh for flows at higher Reynolds numbers. 

CONCLUDING REMARKS 

1. These calculations indicate that, for the frequently studied cavity problem, local oscillations 
in the computed pressures diminish as Re increases. Although one cannot generalize from this 
particular case and set of results, they do raise interesting questions regarding the method and use 
of elements for problems where non-linear effects are significant. 

2. In an attempt to interpret the above result we considered the projection of the computed 
pressure into the orthogonal basis functions for the pressure space described by Johnson and 
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Figure 2. Computed pressures ( + ) p;(x,&$) and averaged pressures ( x ) for Re = 2000 (uniform mesh, h = 1/32 with 
penalty parameter E = 10-3 

Pitkaranta.7,8 No conclusive behaviour or result regarding the smoothness of the pressures at 
Re = 2000 could be obtained from examining the coefficients in this projection. 

3. We also computed the components C, and C, of the projection in the constant and 
'chequerboard' functions. The values of C, and C, are computed from p i  simply by taking the 
L2 inner product with the constant and chequerboard bases. We obtain C, = (3.66)10-", 
(4.47)10-12 and C ,  = (2.39)10-", (2.94)10-'2 for Re = 10 and 2000, respectively. These values 
are small as one would expect from theory-they are the components of p i  in ker B$ (where 
Bt is the discrete gradient operator) and we know that piE(ker B;)I for this formulation. 

One point we wish to emphasize here is that the oscillation (even for Stokes flow Re = 0) is 
not associated with the chequerboard and constant bases. The oscillations arise from other bases 
in the pressure space. 
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4. The fact that the properties of the chequerboard mode are used in constructing a smooth 
filtered pressure approximation is independent of the above point: Johnson and Pitkaranta’ 
give a rigorous explanation of the filtering scheme and its convergence. 
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